top of page

TRIM5a

The HIV-1 restriction factor TRIM5a is composed of four domains: RING, B-box-2, coiled-coil and PRYSPRY domains (Fig. 2A). To understand the contribution of these different domains to restriction, we have solved the structure of the RING, B-Box-2 and PRYSPRY domains (Biris et al., 2013; Diaz-Griffero et al., 2009; Lienlaf et al., 2011; Roa et al., 2012). Our structure-function studies revealed: 1) the RING domain provides E3 ligase activity, which is necessary for restriction(Lienlaf et al., 2011; Roa et al., 2012), 2) the B-box-2 domain regulates the ability of TRIM5ato form higher-order complexes(Diaz-Griffero et al., 2009; 2007b), which is an essential function for the ability of TRIM5a to form an array of protein in the surface of the core (Fig.2B)(Ganser-Pornillos et al., 2004). 3) the PRYSPRY domain is the domain that comes in direct contact with the HIV-1 core (Yang et al., 2014).In summary our findings suggested that the rhesus macaque protein TRIM5a binds to the surface of the HIV-1 core by forming an array protein (Fig. 2B). Formation of this complex recruits Ubc13, which is an E2 enzyme required for restriction(Pertel et al., 2011). Subsequently, an unknown activity leads to acceleration of uncoating (Diaz-Griffero et al., 2007a; Stremlau et al., 2006). Although, we have recently solved the structure of Ubc13 interacting with the RING domain (Yudina et al., 2015), the mechanism and energy source by which this complex leads to acceleration of uncoating is unknown (Fig.2B).

Figure 2. Inhibition of HIV-1 infection by TRIM5a. (A) The different domains of TRIM5aare shown, and a small cartoon depicting the TRIM5a protein is shown on the right side. (B) TRIM5a proteins assembled forming an hexagonal pattern on the surface of the HIV-1 core, and the RING domain of TRIM5a recruits an E2 enzyme (Ubc13). Subsequently the core is disassembled (acceleration of uncoating) and infection is aborted. The mechanism and source of energy for this process is unknown.  

Interestingly, the structure of the PRYSPRY domain, which is the domain that directly interact with the HIV-1 core, exhibit a flexible loop in the region that interacts with the HIV-1 core (Fig. 3), as established by genetic experiments (Li et al., 2006; Yap et al., 2005). These observations suggested that movement of the loop is providing the energy necessary for the complex to accelerate uncoating. Future experiments will test the hypothesis that a flexible loop is required for acceleration of uncoating. To this end, we will identify TRIM5a mutations on the PRYSPRY domain that decrease the flexibility of the loop but preserve binding to the HIV-1 core. These particular variants will be tested for their ability to block HIV-1 and accelerate uncoating in human cells. These studies will be complemented by experiments that will measure the ability of the PRYSPRY domain mutants in solution to disassemble in vitro assembled HIV-1 CA complexes (Fricke et al., 2013a). Overall these experiments will sort out the role of loop flexibility in acceleration of uncoating.

Figure 3. Structure of the PRYSPRY domain of rhesus monkey TRIM5a. The structure of the PRYSPRY domain is shown. The four variable loops of the protein are indicated as V1, V2, V3 and V4. The V1 loop, which directly interact with the HIV-1 core, exhibited hundred of different conformations, as indicated by the strands in different colors. These observations suggested that the PRYSPRY domain of TRIM5a exhibit great plasticity, which might allow the binding to different epitopes on the surface of the HIV-1 core. In addition, the movement of the V1 loop might be the energy necessary for accelerating the uncoating process of HIV-1

Campbell EM, Weingart J, Sette P, Opp S, Sastri J, O'Connor SK, Talley S, Diaz-Griffero F, Hirsch V, Bouamrb F. TRIM5α-mediated ubiquitin chain conjugation is required for inhibition of HIV-1 reverse transcription and capsid destabilization. Journal of Virology. 2016;90(4):1849-1857. DOI: 10.1128/JVI.01948-15

Sastri J, Johnsen L, Smolin N, Imam S, Mukherjee S, Lukic Z, Brandariz-Nuñez A, Robia SL, Diaz-Griffero F, Wiethoff C, Campbell EM. Restriction of HIV-1 by rhesus TRIM5α is governed by alpha helices in the Linker2 region. J Virol. 2014 Aug;88(16):8911-23. doi: 10.1128/JVI.01134-14. Epub 2014 May 28. PubMed PMID: 24872590; PubMed Central PMCID: PMC4136267.

Yang Y, Brandariz-Nuñez A, Fricke T, Ivanov DN, Sarnak Z, Diaz-Griffero F. Binding of the rhesus TRIM5α PRYSPRY domain to capsid is necessary but not sufficient for HIV-1 restriction. Virology. 2014 Jan 5;448:217-28. doi: 10.1016/j.virol.2013.10.012. Epub 2013 Oct 31. PubMed PMID: 24314652; PubMed Central PMCID: PMC3900861.

Biris N, Tomashevski A, Bhattacharya A, Diaz-Griffero F, Ivanov DN. Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. J Mol Biol. 2013 Dec 13;425(24):5032-44. doi: 10.1016/j.jmb.2013.07.025. Epub 2013 Jul 23. PubMed PMID: 23886867; PubMed Central PMCID: PMC4116666.

Pham QT, Veillette M, Brandariz-Nuñez A, Pawlica P, Thibert-Lefebvre C, Chandonnet N, Diaz-Griffero F, Berthoux L. A novel aminoacid determinant of HIV-1 restriction in the TRIM5α variable 1 region isolated in a random mutagenic screen. Virus Res. 2013 May;173(2):306-14. doi: 10.1016/j.virusres.2013.01.013. Epub 2013 Jan 25. PubMed PMID: 23357295; PubMed Central PMCID: PMC4317569.

Brandariz-Nuñez A, Roa A, Valle-Casuso JC, Biris N, Ivanov D, Diaz-Griffero F. Contribution of SUMO-interacting motifs and SUMOylation to the antiretroviral properties of TRIM5α. Virology. 2013 Jan 20;435(2):463-71. doi: 10.1016/j.virol.2012.09.042. Epub 2012 Oct 16. PubMed PMID: 23084420; PubMed Central PMCID: PMC3534947.

Biris N, Yang Y, Taylor AB, Tomashevski A, Guo M, Hart PJ, Diaz-Griffero F, Ivanov DN. Structure of the rhesus monkey TRIM5α PRYSPRY domain, the HIV capsid recognition module. Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13278-83. doi:  10.1073/pnas.1203536109. Epub 2012 Jul 30. PubMed PMID: 22847415; PubMed Central PMCID: PMC3421187.

Roa A, Hayashi F, Yang Y, Lienlaf M, Zhou J, Shi J, Watanabe S, Kigawa T, Yokoyama S, Aiken C, Diaz-Griffero F. RING domain mutations uncouple TRIM5α restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol. 2012 Feb;86(3):1717-27. doi: 10.1128/JVI.05811-11. Epub 2011 Nov 23. PubMed PMID: 22114335; PubMed Central PMCID: PMC3264337.

Lienlaf M, Hayashi F, Di Nunzio F, Tochio N, Kigawa T, Yokoyama S, Diaz-Griffero F. Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5alpha(rh): structure of the RING domain of TRIM5alpha. J Virol. 2011 Sep;85(17):8725-37. doi: 10.1128/JVI.00497-11. Epub 2011 Jul 6. PubMed PMID: 21734049; PubMed Central PMCID: PMC3165826.

Diaz-Griffero F, Gallo DE, Hope TJ, Sodroski J. Trafficking of some old world primate TRIM5α proteins through the nucleus. Retrovirology. 2011 May 15;8:38. doi: 10.1186/1742-4690-8-38. PubMed PMID: 21575157; PubMed Central PMCID: PMC3120760.

Diaz-Griffero F. Caging the beast: TRIM5α binding to the HIV-1 core. Viruses. 2011 May;3(5):423-8. doi: 10.3390/v3050423. Epub 2011 Apr 27. PubMed PMID: 21994740; PubMed Central PMCID: PMC3186010.

Sastri J, O'Connor C, Danielson CM, McRaven M, Perez P, Diaz-Griffero F, Campbell EM. Identification of residues within the L2 region of rhesus TRIM5alpha that are required for retroviral restriction and cytoplasmic body localization. Virology. 2010 Sep 15;405(1):259-66. doi: 10.1016/j.virol.2010.06.015. Epub 2010 Jul 14. PubMed PMID: 20633914; PubMed Central PMCID: PMC2914212.

Diaz-Griffero F, Qin XR, Hayashi F, Kigawa T, Finzi A, Sarnak Z, Lienlaf M, Yokoyama S, Sodroski J. A B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction. J Virol. 2009 Oct;83(20):10737-51. doi: 10.1128/JVI.01307-09. Epub 2009 Aug 5. PubMed PMID: 19656869; PubMed Central PMCID: PMC2753111.

Torimiro JN, Javanbakht H, Diaz-Griffero F, Kim J, Carr JK, Carrington M, Sawitzke J, Burke DS, Wolfe ND, Dean M, Sodroski J. A rare null allele potentially encoding a dominant-negative TRIM5alpha protein in Baka pygmies. Virology. 2009 Aug 15;391(1):140-7. doi: 10.1016/j.virol.2009.05.038. Epub 2009 Jul 3. PubMed PMID: 19577266; PubMed Central PMCID: PMC2760473.

Kar AK, Diaz-Griffero F, Li Y, Li X, Sodroski J. Biochemical and biophysical characterization of a chimeric TRIM21-TRIM5alpha protein. J Virol. 2008 Dec;82(23):11669-81. doi: 10.1128/JVI.01559-08. Epub 2008 Sep 17. PubMed PMID: 18799572; PubMed Central PMCID: PMC2583655.

Diaz-Griffero F, Perron M, McGee-Estrada K, Hanna R, Maillard PV, Trono D, Sodroski J. A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology. 2008 Sep 1;378(2):233-42. doi: 10.1016/j.virol.2008.05.008. Epub 2008 Jun 30. PubMed PMID: 18586294; PubMed Central PMCID: PMC2597210.

Diaz-Griffero F, Kar A, Lee M, Stremlau M, Poeschla E, Sodroski J. Comparative requirements for the restriction of retrovirus infection by TRIM5alpha and TRIMCyp. Virology. 2007 Dec 20;369(2):400-10. Epub 2007 Oct 24. PubMed PMID: 17920096; PubMed Central PMCID: PMC2153441.

Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H, Li X, Sodroski J. Modulation of retroviral restriction and proteasome inhibitor-resistant turnover by changes in the TRIM5alpha B-box 2 domain. J Virol. 2007 Oct;81(19):10362-78. Epub 2007 Jul 11. PubMed PMID: 17626085; PubMed Central PMCID: PMC2045480.

 

Li X, Gold B, O'hUigin C, Diaz-Griffero F, Song B, Si Z, Li Y, Yuan W, Stremlau M, Mische C, Javanbakht H, Scally M, Winkler C, Dean M, Sodroski J. Unique features of TRIM5alpha among closely related human TRIM family members. Virology. 2007 Apr 10;360(2):419-33. Epub 2006 Dec 6. PubMed PMID: 17156811.

Javanbakht H, Yuan W, Yeung DF, Song B, Diaz-Griffero F, Li Y, Li X, Stremlau M, Sodroski J. Characterization of TRIM5alpha trimerization and its contribution to human immunodeficiency virus capsid binding. Virology. 2006 Sep 15;353(1):234-46. Epub 2006 Jun 30. PubMed PMID: 16808955.

Diaz-Griffero F, Vandegraaff N, Li Y, McGee-Estrada K, Stremlau M, Welikala S, Si Z, Engelman A, Sodroski J. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology. 2006 Aug 1;351(2):404-19. Epub 2006 May 2. PubMed PMID: 16650449.

Diaz-Griffero F, Li X, Javanbakht H, Song B, Welikala S, Stremlau M, Sodroski J. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology. 2006 Jun 5;349(2):300-15. Epub 2006 Feb 10. PubMed PMID: 16472833.

Stremlau M, Perron M, Lee M, Li Y, Song B, Javanbakht H, Diaz-Griffero F, Anderson DJ, Sundquist WI, Sodroski J. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5514-9. Epub 2006 Mar 15. PubMed PMID: 16540544; PubMed Central PMCID: PMC1459386.

Song B, Diaz-Griffero F, Park DH, Rogers T, Stremlau M, Sodroski J. TRIM5alpha association with cytoplasmic bodies is not required for antiretroviral activity. Virology. 2005 Dec 20;343(2):201-11. Epub 2005 Sep 22. PubMed PMID: 16183097.

Mische CC, Javanbakht H, Song B, Diaz-Griffero F, Stremlau M, Strack B, Si Z, Sodroski J. Retroviral restriction factor TRIM5alpha is a trimer. J Virol. 2005 Nov;79(22):14446-50. PubMed PMID: 16254380; PubMed Central PMCID: PMC1280198.

Javanbakht H, Diaz-Griffero F, Stremlau M, Si Z, Sodroski J. The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem. 2005 Jul 22;280(29):26933-40. Epub 2005 May 15. PubMedPMID: 15897199.

Figure 4. Restriction of HIV-1 by TRIM5alpha and TRIMcyp.

Figure 1. Localization of TRIM5a.

bottom of page